Taking into account background knowledge as the context has always been an important part of solving tasks that involve natural language. One representative example of such tasks is text-based games, where players need to make decisions based on both description text previously shown in the game, and their own background knowledge about the language and common sense. In this work, we investigate not simply giving common sense, as can be seen in prior research, but also its effective usage. We assume that a part of the environment states different from common sense should constitute one of the grounds for action selection. We propose a novel agent, DiffG-RL, which constructs a Difference Graph that organizes the environment states and common sense by means of interactive objects with a dedicated graph encoder. DiffG-RL also contains a framework for extracting the appropriate amount and representation of common sense from the source to support the construction of the graph. We validate DiffG-RL in experiments with text-based games that require common sense and show that it outperforms baselines by 17% of scores. The code is available at https://github.com/ibm/diffg-rl
translated by 谷歌翻译
Deep neural networks (DNNs) trained on large-scale datasets have exhibited significant performance in image classification. Many large-scale datasets are collected from websites, however they tend to contain inaccurate labels that are termed as noisy labels. Training on such noisy labeled datasets causes performance degradation because DNNs easily overfit to noisy labels. To overcome this problem, we propose a joint optimization framework of learning DNN parameters and estimating true labels. Our framework can correct labels during training by alternating update of network parameters and labels. We conduct experiments on the noisy CIFAR-10 datasets and the Clothing1M dataset.The results indicate that our approach significantly outperforms other state-of-the-art methods.
translated by 谷歌翻译
When simulating soft robots, both their morphology and their controllers play important roles in task performance. This paper introduces a new method to co-evolve these two components in the same process. We do that by using the hyperNEAT algorithm to generate two separate neural networks in one pass, one responsible for the design of the robot body structure and the other for the control of the robot. The key difference between our method and most existing approaches is that it does not treat the development of the morphology and the controller as separate processes. Similar to nature, our method derives both the "brain" and the "body" of an agent from a single genome and develops them together. While our approach is more realistic and doesn't require an arbitrary separation of processes during evolution, it also makes the problem more complex because the search space for this single genome becomes larger and any mutation to the genome affects "brain" and the "body" at the same time. Additionally, we present a new speciation function that takes into consideration both the genotypic distance, as is the standard for NEAT, and the similarity between robot bodies. By using this function, agents with very different bodies are more likely to be in different species, this allows robots with different morphologies to have more specialized controllers since they won't crossover with other robots that are too different from them. We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster when compared to having separated genomes for body and control. The agents in our population also show morphologies with a high degree of regularity and controllers capable of coordinating the voxels to produce the necessary movements.
translated by 谷歌翻译
Our team, Hibikino-Musashi@Home (the shortened name is HMA), was founded in 2010. It is based in the Kitakyushu Science and Research Park, Japan. We have participated in the RoboCup@Home Japan open competition open platform league every year since 2010. Moreover, we participated in the RoboCup 2017 Nagoya as open platform league and domestic standard platform league teams. Currently, the Hibikino-Musashi@Home team has 20 members from seven different laboratories based in the Kyushu Institute of Technology. In this paper, we introduce the activities of our team and the technologies.
translated by 谷歌翻译
进化策略(ES)是黑框连续优化的有前途的算法类别之一。尽管在应用方面取得了广泛的成功,但对其收敛速度的理论分析在凸二次函数及其单调转换方面受到限制。%从理论上讲,它在凸功能上的收敛速度速度仍然很模糊。在这项研究中,(1+1)-ES在本地$ l $ -l $ -lipschitz连续梯度上的上限和下限(1+1)-ES的线性收敛速率被推导为$ \ exp \左( - \ omega_ {d \ to \ infty} \ left(\ frac {l} {d \ cdot u} \ right)\ right)\ right)$ and $ \ exp \ left( - \ frac1d \ right)$。值得注意的是,对目标函数的数学特性(例如Lipschitz常数)的任何先验知识均未给出算法,而现有的无衍生化优化算法的现有分析则需要它们。
translated by 谷歌翻译
本文档描述了Spotify出于学术研究目的发布的葡萄牙语播客数据集。我们概述了如何采样数据,有关集合的一些基本统计数据,以及有关巴西和葡萄牙方言的分发信息的简要信息。
translated by 谷歌翻译
在多类分类模型的现实应用应用中,重要类中的错误分类(例如停止符号)可能比其他类别(例如速度限制)更有危害。在本文中,我们提出了一个损失函数,可以改善重要类别的回忆,同时使用跨透镜损失保持与情况相同的准确性。出于我们的目的,我们需要比其他班级更好地分离重要班级。但是,现有的方法对跨凝性损失造成较敏感的惩罚并不能改善分离。另一方面,给出特征向量与与每个特征相对应的最后一个完全连接层的重量向量之间的角度的方法可以改善分离。因此,我们提出了一个损失函数,可以通过仅设置重要类别的边缘来改善重要类别的分离,即称为类敏感的添加性角度损失(CAMRI损失)。预计CAMRI的损失将减少重要类的特征和权重之间的角度方差相对于其他类别,这是由于特征空间中重要类周围的边缘通过为角度增加惩罚而在特征空间中的边缘。此外,仅将惩罚集中在重要类别上几乎不会牺牲其他阶级的分离。在CIFAR-10,GTSRB和AWA2上进行的实验表明,所提出的方法可以在不牺牲准确性的情况下改善跨透镜损失的召回率提高了9%。
translated by 谷歌翻译
深度神经网络(DNN)众所周知,很容易受到对抗例子的影响(AES)。此外,AE具有对抗性可传递性,这意味着为源模型生成的AE可以以非平凡的概率欺骗另一个黑框模型(目标模型)。在本文中,我们首次研究了包括Convmixer在内的模型之间的对抗性转移性的属性。为了客观地验证可转让性的属性,使用称为AutoAttack的基准攻击方法评估模型的鲁棒性。在图像分类实验中,Convmixer被确认对对抗性转移性较弱。
translated by 谷歌翻译
场景中光的极化信息对于各种图像处理和计算机视觉任务很有价值。平面偏光仪是一种有前途的方法,可以一次性地捕获不同方向的极化图像,而它需要颜色极化的表现。在本文中,我们提出了一个两步的颜色偏振化学网络〜(TCPDNET),该网络由两个颜色的表演和极化演示组成。我们还引入了YCBCR颜色空间中的重建损失,以提高TCPDNET的性能。实验比较表明,TCPDNET在极化图像的图像质量和Stokes参数的准确性方面优于现有方法。
translated by 谷歌翻译
实现接近真实机器人的高度准确的运动学或模拟器模型可以促进基于模型的控制(例如,模型预测性控制或线性质量调节器),基于模型的轨迹计划(例如,轨迹优化),并减少增强学习方法所需的学习时间。因此,这项工作的目的是学习运动学和/或模拟器模型与真实机器人之间的残余误差。这是使用自动调节和神经网络实现的,其中使用自动调整方法更新神经网络的参数,该方法应用了从无味的Kalman滤波器(UKF)公式进行方程式。使用此方法,我们仅使用少量数据对这些残差错误进行建模 - 当我们直接从硬件操作中学习改善模拟器/运动学模型时,这是必要的。我们演示了关于机器人硬件(例如操纵器组)的方法,并表明,通过学习的残差错误,我们可以进一步缩小运动学模型,模拟和真实机器人之间的现实差距。
translated by 谷歌翻译